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ABSTRACT

GPU-accelerated cloud has become the mainstream with explosive
demand from applications such as deep learning. Many studies
have been conducted to improve GPU virtualization technology to
increase efficiency while sharing GPU among multiple tenants.
Little attention has been paid to the performance of GPU instance
using passthrough technique. The Quality of Service (QoS) of GPU
in such instance is assumed to be guaranteed since the GPU is
dedicatedly attached to the instance without being shared.
However, through some motivating experiments, we show that the
passthrough-attached GPU could be severely underutilized in the
multi-tenant server, and the GPU utilization can be degraded up to
30x when compared to the GPU instance running in the dedicated
server. The key observation is that the multi-tenant server GPU
instance would still share the multicore CPU with other instances
for higher system throughput and lower cost. A typical GPU
application would prepare the data and the task (i.e., the GPU
kernel) on CPU and transfer them to the GPU to launch the kernel.
However, the interference from other instances on the CPU side
could delay the dispatch and response of the GPU kernel, and
cause low GPU QoS. To mitigate this problem, application
characteristics would be analyzed to identify the performance
bottleneck, based on which the system level solution, such as an
amendment in the priority of processes, would be proposed.

BACKGROUND

GPGPU (General Purpose GPU) greatly accelerates large scale data
processing and parallel computing. Thus, most major cloud

providers have introduced the GPU cloud by provisioning the GPU
instances.

GPU virtualization, as the key enabling technology, allows GPU
instances to access either the shared or dedicated GPU devices.
Several main techniques include:

© PCI Passthrough (DirectPath I/0)
© NVIDIA GRID vGPU

© intel KVMGT

© AMD MxGPU

PCI Passthrough [6] is the most widely used technique which
supports high performance cloud infrastructure. It is the method
by which a Virtual Machine (VM) gains direct access to the
dedicated GPU, permitting the VM to fully benefit from the GPU’s
processing capability.
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PROBLEM STATEMENT

The dividing and issuing of tasks between the CPU and the GPU is an essential asset in program execution. This involves 3 major phases: 1)
CPU execution (which includes setting up variables, memory allocation, execution of code snippets, sending of kernels to GPU), 2) CPU-GPU
communication (which includes copying data between CPU->GPU and GPU->CPU), 3) GPU execution (which includes extracting instructions,
executing and computing data). The following flowcharts demonstrate the different scenarios as to which the 3 phases may be executed:
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In the first scenario, the CPU and GPU are processing synchronously and no additional kernels are sent until the data is fully processed and
sent back to the CPU. In the third scenario, the CPU and GPU are processing asynchronously. Specifically, it shows that the CPU sends kernels
faster than the GPU can process. This forms a cluster of kernels hence keeping the GPU fully utilized. The problem is when the CPU
execution is slowed down by the resource sharing, kernel dispatching and responding could be severely delayed. This would convert the first
scenario to the second scenario and convert the third scenario to the fourth scenario. As shown in the second and fourth scenarios, if the
CPU phase is delayed due to sharing resources with other VMs, the GPU utilization would be reduced as a consequence, and have an overall
negative effect on the performance of the workload being processed.

MOTIVATING EXPERIMENT

To show the GPU underutilization problem, experiments were conducted on the JUPITER server, which contains 4 Intel Xeon Gold 6138 CPUs
with 80 cores@2.00GHz and 2 NVIDIA Corporation Tesla P100 PCle 16GB GPUs. Two Virtual Machines (VMs) are setup as a representation of
the multi-tenant GPU cloud. The first VM is a 16-vCPU VM with a dedicated GPU attached by PCI Passthrough to run the CPU- & GPU-intensive
workload. The second VM, as the corunner VM, is a 16-vCPU VM to run only the CPU-intensive workload without any GPU attached. The two
VMs are pinning on the same set of 16 cores to share the CPU resource. The workloads/benchmarks that were exploited in this experiment
were chosen due to their extensive use in countless research projects and their focus on different fields of study. The following are the two
categories of benchmarks chosen and their fields of study:
Both CPU & GPU Intensive: {CAT1}
© NAMD
© Gromacs

Uniquely CPU Intensive (used in corunner VM): {CAT2}
© Streamcluster [ Data Mining ]
[ Biochemical Molecular Dynamics ] © matmul [ Matrix Multiplication ]
© DQN [ Artificial Intelligence ] © Bodytrack [ Computer Vision ]
Each benchmark in CAT1 was evaluated in the following two scenarios: 1) when the benchmark was running in the first VM without corunner
VM running, 2) when the benchmark was running in the first VM with the corunner VM executing each benchmark in CAT2. The following
shows the results of the NAMD benchmark when it was executed in the two scenarios:

[ Scientific Simulation ]

Performance of NAMD (rotal exec. time) Performance of NAMD (cpu & Gpu utilization)

NAMD w/ matmul

It is evident by the spike in CPU execution time (an increase of almost 85 times) and the downward spiral of the CPU & GPU utilization (a
decrease of almost 30 times) that the performance of the benchmark was degraded as compared to when it was run solo. This puts light and
proves that there exists a problem that causes heavy turnover and underutilization of resources on cloud platforms that are potentially
running a colossal number of instances to consumers.

Fig. CPU & GPU % during solo NAMD Fig. CPU & GPU % during NAMD w/ matmul

PROPOSED SOLUTION (work in progress)

We use an example here to explain the key idea of the proposed
solution. In the figures below VM 1 is running the GPU workload
and VM 2 (i.e., the corunner) is running the CPU workload. The
two VMs are sharing the CPU resource. As the left subfigure shows,
whenever the VM1 tries to send data/kernel or respond to the
result from the GPU, the CPU execution is delayed by VM2’s
execution, which is indicated by the shadow box. This is because
by default the work conserving scheduling is used. When VM1 is
idle on CPU, VM2 would take advantage of the CPU resource to
reduce the waste. However, this would slow down the speed of VM
sending and responding to the data/kernel and reduce GPU
utilization because of the delay. We proposed to temporarily boost
the priority of VM1 once the system detects that VM1 is handling
the GPU data/kernel as shown in the right subfigure while
maintaining the fairness. In the best case, VM1 would be running
like using CPU delicately without causing the GPU underutilization
problem. The proposed idea can be applied for both synchronized
and asynchronized executions.
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FUTURE WORK

The following ideas and experiments could be done:

© deeper analysis of already chosen benchmarks and the
acquiring of more benchmarks in common fields of study

© more studying of CUDA programming to implement
application-level modifications to benchmark program code

© producing and proposing a resilient system-level solution to
lessen or eliminate the effects of the problem
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